Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1137820070280060803
ÀÇ°øÇÐȸÁö
2007 Volume.28 No. 6 p.803 ~ p.810
Ultrasound Synthetic Aperture Beamformer Architecture Based on the Simultaneous Multi-scanning Approach
Lee Yu-Hwa

Kim Seung-Soo
Ahn Young-Bok
Song Tai-Kyong
Abstract
Although synthetic aperture focusing techniques can improve the spatial resolution of ultrasound imaging, they have not been employed in a commercial product because they require a real-time N-channel beamformer with a tremendously increased hardware complexity for simultaneous beamforming along M multiple lines. In this paper, a hardware-efficient beamformer architecture for synthetic aperture focusing is presented. In contrast to the straightforward design using NM delay calculators, the proposed method utilizes only M delay calculators by sharing the same values among the focusing delays which should be calculated at the same time between the N channels for all imaging points along the M scan lines. In general, synthetic aperture beamforming requires M 2-port memories. In the proposed beamformer, the input data for each channel is first upsampled with a 4-fold interpolator and each polyphase component of the interpolator output is stored into a 2-port memory separately, requiring 4M 2-port memories for each channel. By properly limiting the area formed with the synthetic aperture focusing, the input memory buffer can be implemented with only 4 2-port memories and one short multi-port memory.
KEYWORD
medical ultrasound imaging, ultrasound beamformer, synthetic aperture
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) ´ëÇÑÀÇÇÐȸ ȸ¿ø